Definitions
Def. 1
A field $F$ is a set together with two laws of composition:
-
addition: $F \times F \stackrel{+}{\rightarrow} F \quad (a, b \rightarrow a b)$
-
multiplication: $F \times F \stackrel{\times}{\rightarrow} F \quad (a, b \rightarrow a+b)$
that satisfies 3 axioms:
- Addition makes $F$ into an abelian group $F^{+}$ with identity element 0.
- Multiplication is commutative, and it makes the set of nonzero elements of $F$ into an abelian group $F^{\times}$ with identity element 1.
- distributive law: For all $a, b$, and $c$ in $F, a(b+c)=a b+a c$.
Notice, the axiom 1,2 describe the properties of $\times$ and $+$. Axiom 3 relates axioms 1,2.
Def. 2
A subfield of the field $\mathbb{C}$ (complex numbers) is a subset that is *closed* under four operations $+, -, \times, \div$ and contains $1$.
i.e. $F$ is a subfield of $\mathbb{C}$ if it has the following properties:
\[\begin{array}{ll} (+)\quad a,b \in F &\Rightarrow a+b \in F\\ (-)\quad a \in F &\Rightarrow -a \in F\\ (\times)\quad a,b \in F &\Rightarrow ab \in F\\ (\div)\quad a \in F(a\neq 0) &\Rightarrow a^{-1} \in F\\ (1)\quad 1\in F \end{array}\]The above implies
- $0\in F$
- $F$ is a subgroup of additive group $\mathbb{C^+}$
- $F \backslash {0}$ is a subgroup of the multiplicative group $\mathbb{C^\times}$
Def.3
A vector space $V$ over a field $F$ is a set together with two laws of composition:
- addition: $V \times V \rightarrow V\quad (v, w \rightarrow v+w$ for $v,w \in V)$
-
scalar multiplication by elements of the field:
$F \times V \rightarrow V\quad (c, v \rightarrow cv$ for $c \in F, v\in V)$
that satisfies 4 axioms:
- Addition makes $V$ into a commutative group $V^+$ with identity element $0$.
- $1v=v$ for all $v\in V$.
- associative law: $(ab)v=a(bv)$, for all $a,b \in F$ and $v\in V$.
- distributive laws: $(a+b)v=av+bv$ and $a(v+w)=av+aw$, for all $a,b \in F$ and $v,w \in V$.
Def.4
A subset $W$ of $\mathbb{R^n}$ is a subspace if
- $w,w’\in W\Rightarrow w+w’\in W$.
- $c\in \mathbb{R},w \in W \Rightarrow cw\in W.$
- zero vector $\in W$
This is equivalent of saying:
- $W$ is non-empty.
-
$c_1,c_2,…,c_n\in \mathbb{R}, w_1,w_2,…,w_n\in W$
$\Rightarrow$ linear combination $c_1w_1+…+c_nw_n \in W$