Bifurcations In the Geometry of the Attractor In Border Collision Normal Form

Xitian Huang

Department of Mathematics
University of Manchester
10 June 2022

From Piecewise Smooth to Border Collison

From Piecewise Smooth to Border Collison

From Piecewise Smooth to Border Collison

Border Collision Normal Form:

$$
\begin{gathered}
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
\mathbf{x}_{\mathbf{n}+\mathbf{1}}=A \mathbf{x}_{\mathbf{n}}+\mathbf{m} \\
A=\left[\begin{array}{cc}
\tau_{\alpha} & 1 \\
-\delta_{\alpha} & 0
\end{array}\right], \quad \alpha=L, R \\
\mathbf{m}=\left[\begin{array}{c}
\mu \\
0
\end{array}\right], \quad \mathbf{x}_{n}=\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
\end{gathered}
$$

μ : bifurcation parameter, WLOG, $\mu=1$.

Some Definitions

Absorbing Region
A closed connected area \mathcal{A} such that $T(\mathcal{A}) \subseteq \mathcal{A}$.
When $T(\mathcal{A})=\mathcal{A}, \mathcal{A}$ is an invariant absorbing area.
[continuous map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$]

Attractor

An invariant absorbing area \mathcal{A} such that $\exists \mathcal{U} \supset \mathcal{A}$ open, we have $\lim _{n \rightarrow \infty} T^{n}(\mathcal{U})=\mathcal{A}$ and the orbits of T are dense.

Some Definitions

```
Absorbing Region
A closed connected area \(\mathcal{A}\) such that \(T(\mathcal{A}) \subseteq \mathcal{A}\).
When \(T(\mathcal{A})=\mathcal{A}, \mathcal{A}\) is an invariant absorbing area.
[continuous map \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) ]
```


Attractor

An invariant absorbing area \mathcal{A} such that $\exists \mathcal{U} \supset \mathcal{A}$ open, we have $\lim _{n \rightarrow \infty} T^{n}(\mathcal{U})=\mathcal{A}$ and the orbits of T are dense.

$$
\text { attractor } \Rightarrow \text { invariant absorbing area }
$$

Constructing Attractors

Non-attractor examples

Figure: Fixed point

Figure: Periodic orbits

Constructing Attractors

Markov partition (simple, polygonal)

Conditions:

- $\mu>0$,
- $F^{n}(O)=P_{n}=\left(0, y_{0}\right)$, where $y_{0}<-\mu$,
- All points $P_{1} P_{2} \ldots P_{n-1}$ are on the right,
- Fixed point A is inside the triangle $P_{1} P_{n+1} Q$,
- Q is in $P_{1} P_{2} \ldots P_{n} P_{n+1}$.

Figure: Markov partition

Constructing Attractors

Bifurcations

Perturbation

Bifurcations

Perturbation

Continuity of the map ensures the existence of attractor

Bifurcations

Perturbation

Bifurcations

Perturbation

what are the new boundaries?

Critical Curves

Given a two-dimensional non-invertible differentiable map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, an invariant absorbing area A.

Critical Curve LC

Locus of points having two or more coincident preimages.
Define $\gamma=A \cap L C$, the boundary of the ∂A of the absorbing area A satisfies

$$
\partial A \subset \bigcup_{k=1}^{m} T^{k}(\gamma)
$$

for some integer m.

Bifurcations

Boundaries

Images of $O Q_{1}$:

$$
O Q_{1} \rightarrow P_{1} Q_{2}-\left[\begin{array}{l}
O P_{1} \rightarrow P_{1} P_{2}-\left[\begin{array}{l}
P_{1} Q_{1} \rightarrow P_{2} Q_{2} \rightarrow P_{3} Q_{3} \\
P_{2} Q_{1} \rightarrow P_{3} Q_{2} \rightarrow P_{4} Q_{3} \\
O Q_{2} \rightarrow P_{1} Q_{3} \rightarrow P_{2} Q_{4}
\end{array} .\right.
\end{array}\right.
$$

Bifurcations

Bifurcations

Bifurcations

Bifurcations

Conclusion

- small neighbourhood perturbation
- piecewise continuous map
- finite many sides
\Rightarrow New attractors

