
Bifurcations In the Geometry of the Attractor In

Border Collision Normal Form

Xitian Huang

Student ID: 10432171

Supervisor: Paul Glendinning

May 2022

Contents

1 Introduction 1
1.1 Preliminaries . 1

1.1.1 Border Collision Normal Form 1
1.1.2 Absorbing Area and Attractor 2

1.2 Construction of the Attractor . 2
1.2.1 Conditions for the Attractors 2
1.2.2 Geometric Behaviour . 4

1.3 Programming . 5

2 Bifurcations 7
2.1 Bifurcation On the Border . 7

2.1.1 Theoretical Setup . 7
2.1.2 P2 on the Right . 9
2.1.3 P2 on the Left . 10
2.1.4 Method of Critical Curves 10

2.2 Bifurcation On the Boundary . 12
2.2.1 When P2 is On the Right 12
2.2.2 When P2 is On the Left 15

2.3 More Bifurcations . 16

3 Conclusion 19

Appendix 22

i

Chapter 1

Introduction

The study of piecewise smooth systems with a low dimensional invariant sub-
manifold has brought the attention of researchers in the field of nonlinear math-
ematics in the past decades. With the advancement in computer science, many
numerical analyses were accomplished to further aid the theoretical studies of
such dynamical systems. In particular, the bifurcations in such systems have
many interesting behaviours, including the generation of absorbing regions, at-
tractors, periodic orbits, etc., as we will demonstrate later.

This project is devoted to studying the attractors of what is known as border
collision normal form, transformed as a first-order approximation to any two
dimensional piecewise smooth map. Specifically, we will look at the bifurcations
in the geometry of attractors in its parameter space.

1.1 Preliminaries

1.1.1 Border Collision Normal Form

Consider a two dimensional piecewise smooth map f(x, y; ρ) that has depen-
dence on a parameter ρ of the form:

f(x, y; ρ) =

!
f1(x, y; ρ) for x, y ∈ Ra

f2(x, y; ρ) for x, y ∈ Rb.
(1.1)

f1 and f2 are assumed to be continuously differentiable in their corresponding
domains Ra and Rb. Notice that at the border Γρ that separates Ra and Rb,
the piecewise map f formed by f1 and f2 is continuous, but its derivative is not
continuous. The one-sided derivatives at the border are assumed to be finite.

Illustrated by Nusse and Yorke (1992), such a piecewise smooth map can be
transformed by a change of coordinates, up to first-order affine approximation,
to a border collision normal form:

1

CHAPTER 1. INTRODUCTION 2

F (x, y;µ) =

"
##$

##%

&
τL 1
−δL 0

'&
x
y

'
+ µ

&
1
0

'
for x ! 0

&
τR 1
−δR 0

'&
x
y

'
+ µ

&
1
0

'
for x > 0,

(1.2)

where the new border is the y-axis: x = 0, which divides the space into two
regions: L for left, R for right. The new parameter µ is obtained by rescaling
ρ. τ and δ are the trace and determinant of the Jacobian matrix of both maps
f and F on either side. This is because the trace and determinant are invariant
under the transformation of coordinates.

1.1.2 Absorbing Area and Attractor

Absorbing area
Given a continuous map T : R2 → R2, a closed connected area A is an absorbing
area if T (A) ⊆ A. When T (A) = A, A is called an invariant absorbing area.

Attractor
An invariant absorbing area A becomes an attractor if there exists an open set
U that contains A such that lim

n→∞
Tn(U) = A and the orbits of T are dense in

A (Tn denotes the n-th iterate of T).

Therefore, attractor implies (invariant) absorbing area but the converse is not
necessary.

1.2 Construction of the Attractor

It is shown by Glendinning and Wong (2011) that there exists an attractor in
the form of a finite Markov partition. Such attractor has a simple geometry, it
is formed by straight lines and together they create a polygon. We will develop
the theory based on this and study the bifurcation in its geometry later.

1.2.1 Conditions for the Attractors

Consider the normal form in Eq.(1.2). It is a piecewise linear map and hence
the magnitude of the parameter µ does not influence observing the bifurcations
in our case, only the sign. When µ = 0, the fixed points on two sides collide and
annihilate, this is the standard saddle-node bifurcation and does not concern the
study of this project. Therefore, without loss of generality and for convenience,
we can set µ = 1.

It is obvious that the map always sends the origin O(0, 0) to P1(µ, 0). Figure
1.1 gives an illustrative picture. Require the first n-th iterate of the map to be
on the y-axis, Fn(O) = Pn = (0, y0). This determines the parameters τR and
δR if the number of iterations n is specified.

CHAPTER 1. INTRODUCTION 3

-1-1 11 22

-2-2

-1-1

00

OO PP11

PPnn

PPn+1n+1

PP22

PP33

PPn-1n-1

QQ

AA

Fixed point

Figure 1.1: Iterated points from O under the map F , O → P1 → P2 → ... →
Pn → Pn+1 → Q, forms a closed convex polygon P1P2...PnPn+1 with n + 1
sides. y0 = −2, µ = 1.

Then F (Pn) = Pn+1 = (y0 + µ, 0). We need y0 + µ < 0 so that Pn+1 is on the
left. The fixed point A of F on the right, given by F (A) = A when x > 0 is

A =
µ

1− τR + δR
(1,−δR) . (1.3)

Let point Q = F (Pn+1) such that the fixed point on the right A is inside the
triangle P1Pn+1Q and Q is in the polygon P1P2...PnPn+1. If Q is outside this
polygon, the iterated points will eventually escape from the polygon and this
doesn’t form an absorbing area. Since Pn+1 is on the left, this determines the
parameters τL and δL if the coordinate of Q is given.

The reason for the condition that A in P1Pn+1Q is as follows. We look at the
area P1Pn+1Q, the image of the left area OPnPn+1 under the map F when
x < 0. If this triangle doesn’t cover the fixed point A, then the absorbing region
may have a “hole” near A or other periodic structures, and the geometry of
the attractors becomes much more complicated, as shown in Figure 1.2. This
is because the map creates unstable periodic orbits and if A is not in P1Pn+1Q,
iterated points starting near A will spiral away from it, hence the creation of
the hole.

To determine the local stability of the periodic orbits, (Di Bernardo et al.;
2008) one needs to find the modulus of the eigenvalues λ± of the square matrix
in Eq.(1.2):

λ± =
τ ±

√
τ2 − 4δ

2
. (1.4)

If both |λ+|, |λ−| > 1, the periodic orbits are unstable, as is what happens here.

In summary, we have the following assumptions:

• µ > 0 in Eq.(1.2),

• Fn(O) = Pn = (0, y0), where y0 < −µ,

CHAPTER 1. INTRODUCTION 4

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0 P1

P2

P3

P4

P5

�� � ����� �� � ����
�� � ����� �� � ���	�

O

Fixed point

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0 P1

P2

P3

P4

P5

P6

�� � ����� �� � ����
�� � ����� �� � �����

O

Fixed point

(b)

Figure 1.2: Generations of the hole or periodic structure when P1P4P5 or P1P5P6

doesn’t cover the fixed point. 10000 points were plotted in each figure.

• All points P1P2...Pn−1 are on the right,

• Fixed point A is inside the triangle P1Pn+1Q,

• Q is in P1P2...PnPn+1.

With these conditions, the four parameters τL, δL, τR, δR are determined (by
solving linear equations with MATLAB in this project) and P1P2...PnPn+1

forms an invariant absorbing area, moreover, an attractor. The proof of a
quadrilateral attractor is given in (Glendinning and Wong; 2011).

As mentioned before, the size of µ does not matter, this also applies to y0. We
set µ = 1, y0 = −2 and will use these values hereafter unless otherwise stated.
Figure 1.1 depicted the situation in more detail.

1.2.2 Geometric Behaviour

With the above theoretical setup, Figure 1.3 gives 6 figures of the polygonal
attractors with different number of sides.

Instead of looking at the set of single points the map sends to, one should look
at the iterated lines and areas. If a line AB is mapped to BC, then any point
on AB will have its image on BC. The same applies to areas. This would be
particularly useful later when we try to find the lines that form the boundary of
the attractor, and the areas that determine the existence of a simple attractor.
For instance, when finding the conditions for the attractors in the last section,
one requires the fixed point A to be inside the area formed by the triangle
P1Pn+1Q.

Looking at the plots in Figure 1.3, we see some regions are more “dense” than
other regions. This is a “folding action”, as described in (Banerjee et al.; 1998).
In Figure 1.3(a), P1P3P4 is darker. We also see some vague lines inside the poly-
gons, e.g., P3P4 is the image of P2P3. The creation of other lines is analogous.

CHAPTER 1. INTRODUCTION 5

1.3 Programming

Help from the computer plays a vital role in this project as we usually need
to plot around 40000 points, which means 40000 iterations of the map. In the
Appendix, four MATLAB scripts used throughout are included. All Figures
that appeared (except the schematic diagrams) in this paper were generated by
these codes.

Two of them are defined functions: f.m and InterX.m.

f.m is simply the function in Eq.(1.2). Input a point gives a new point under
the map. Input a line (two points) gives a new line by the map (or two lines if
it crosses the y-axis).

InterX.m gives the intersection of two lines.

These two functions need not be altered.

main.m is the main script that plots the iteration points. Note that some initial
variables need to be modified to adapt to different circumstances.

label.m labels the plot. This includes, annotate the points, find the vertices
that construct the boundary of the attractor and draw the boundary of the
attractor. In this code, depending on the situation, some parts of it need to
be commented in order for the code to run. Many of its variables need to be
modified manually, e.g., polygon, pt start, X 1, X 2, X 3 according to the
resulted plot from main.m.

Always start from main.m and run label.m next (modify label.m if necessary).

CHAPTER 1. INTRODUCTION 6

(a) (b)

(c) (d)

(e) (f)

Figure 1.3: The generated simple polygonal attractors with different numbers
of sides. The values of parameters are given in each case. 40000 points were
plotted in each figure.

Chapter 2

Bifurcations

The border collision normal form is a piecewise linear and everywhere contin-
uous map on R2. Therefore, the perturbation in a small neighbourhood of its
parameter space should not impact drastically the behaviour of the system. In
what follows, we will study how such perturbation changes the geometry of the
previous simple polygonal attractors.

2.1 Bifurcation On the Border

Let’s start from the simplest case in Figure 1.3(a) where we have a triangular
attractor. We will move point P2 by a small amount in the following way.

2.1.1 Theoretical Setup

Suppose the coordinate vector of P2 is x2, it is the second iterate from the origin
of the map F in Eq.(1.2), i.e.

F 2(0) = x2. (2.1)

Therefore, there exists a one-to-one bijection, between the coordinates vector
x2 and the parameters τ, δ that defines the map F when x > 0. To show this,
consider parameterising τ and δ by a single variable v ∈ R such that they are
continuous functions,

τ ≡ τ(v),

δ ≡ δ(v).
(2.2)

This parameterisation of a single variable is possible as the perturbation from
some point forms a one-dimensional trajectory.

F 2(0) is a 2D vector function of τ and δ,

7

CHAPTER 2. BIFURCATIONS 8

F 2(0) =
(
f1(τ, δ), f2(τ, δ)

)

=

&
f1

(
τ(v), δ(v)

)
, f2

(
τ(v), δ(v)

)'
.

(2.3)

Note that, scalar functions f1 and f2 are x and y components of F 2. They are
continuous on R2 due to the continuity of F . As τ(v) and δ(v) are also defined
to be continuous, with Eq.(2.1), we see that x2 is a continuous function of v,

x2(v) = F 2(0). (2.4)

To see the effects of this perturbation, one should look at the image of P2, i.e.
vector x2 under the map F . F is dependent on the input coordinate vector
x and the parameters τ and δ, which are parameterised by v. So F can be
re-expressed as

F = F (x, v). (2.5)

Now we should applied the initial conditions when a triangular attractor appears
in Figure 1.3(a). Define v = v0 such that x2 is on the y-axis (which means v = v0
is the point when P2 hits the border x = 0):

x2(v0) = (0, y2). (2.6)

P2 is mapped to P3, denoted by x3(v0):

F (x2(v0), v0) = x3(v0). (2.7)

Clearly, the left-hand side of the above equation is merely a function that is
only dependent on v0. Therefore, it is convenient to define a new continuous
function G such that

G(v) ≡ F (x2(v), v) . (2.8)

So
G(v0) = x3(v0). (2.9)

Now comes the perturbation, consider u ∈ R, |u| is small so that v0 → v0 + u.
This subsequently changes the parameters as well as x2 and x3. Point P2 moves
to a new neighbouring point while for P3, its coordinate vector x3, using linear
approximation, gives

x3 (v0 + u) = F (x2 (v0 + u) , v0 + u)

= G (v0 + u)

= G (v0) + u
dG

dv

v=v0

= x3 (v0) + u
dG

dv

v=v0

.

(2.10)

CHAPTER 2. BIFURCATIONS 9

According to Eq.(2.8), G is composed of F and x2. Note that the derivative of
F is discontinuous at the border as mentioned in Section 1.1.1. However, the
term above, udG

dv

**
v=v0

is continuous with the introduction of u. The argument
is as follows.

Take ε > 0 such that

|x3 (v0 + u)− x3 (v0)| < ε. (2.11)

From Eq.(2.10),

|x3 (v0 + u)− x3 (v0)| =

*****u
&
dG

dv

'

v=v0

***** . (2.12)

Hence, we can always find a δ > 0 such that |u| < δ and

*****u
&
dG

dv

'

v=v0

***** < ε (2.13)

by letting

δ < ε/

&
dG

dv

'

v=v0

***** . (2.14)

Therefore, x3 is continuous at the border. This then brings a continuous change
in the position of P3, Thus the attractor will be continuously “deformed” in a
small neighbourhood of the parameter space. This will ensure the existence of
the attractor when P2 is perturbed to the right or left side of the y-axis. We
will divide our discussion into these two categories.

The above argument certainly isn’t only limited to the triangular attractor but
can be applied to an n-gon as presented in Section 1.2 by altering the number
of iterations from 2 to n in Eq.(2.1).

2.1.2 P2 on the Right

First, perturb P2 to the right by a small amount. The new attractor is shown
in Figure 2.1. With the new set of parameters, we observed that the previous
triangular attractor becomes quadrilateral.

The extra added point is Q2, which is the image of Q1: the intersection point
of the axis with P2P3.

Start by looking at the successive images of OP1, OP1 → P1P2 → P2P3. Be
aware that the image of P2P3 is NOT P3P4 because the map changes when
it crosses the y-axis. Hence, it needs to be considered separately as two seg-
ments on each side, namely, P2Q1 and Q1P3, which maps to P3Q2 and Q2P4

respectively. Surprisingly, P3Q2 is the new boundary line for this new attractor.
Note that now P1Q2P4Q3 must cover the fixed point to form the attractor as
explained earlier.

CHAPTER 2. BIFURCATIONS 10

Figure 2.1: The new P2 is perturbed to the right from its original position on
the y-axis. Q1 is the intersection of the line P2P3 with the axis. Under the
map, Q1 → Q2 → Q3, O → P1 → P2 → P3 → P4. P2 has a new coordinate
(0.3,−1.9).

2.1.3 P2 on the Left

Now perturb P2 to the left of the y-axis. The new attractor is formed as shown
in Figure 2.2. The boundary of this new attractor is not easy to find out and
it’s not simply the connected lines between iterated points. Before doing this,
we will introduce a systematic way to find the boundary of an absorbing area,
known as the critical curve.

Figure 2.2: The new P2 is perturbed to the left from y-axis. Q1 is the intersec-
tion of the line P1P2 with the axis. Similar to before, Q1 → Q2 → Q3, O →
P1 → P2 → P3 → P4. P2 has a new coordinate (−0.2,−2).

2.1.4 Method of Critical Curves

Mira (1996) gave a method of studying the non-invertible maps by looking at the
critical curves of the map. The border collision normal form is a non-invertible

CHAPTER 2. BIFURCATIONS 11

map, because the inverse of any point contains two points, each is found by two
piecewise invertible maps when x > 0 or x < 0.

Given a two-dimensional non-invertible differentiable map T : R2 → R2, the
number of preimages of a point (x, y) maybe 0 or 1, 2,.... Hence it is natural to
divide the plane R2 into regions Z0, Z1, ..., Zn, where Zk, for some k, denotes
the set of points having exactly k preimages. As point crosses the boundaries
of different Zk, preimages are generated or destroyed. This gives rise to the
definition of critical curve LC as the set of points having two or more coincident
preimages.

Given an absorbing area A, define the segment γ as

γ = A ∩ LC. (2.15)

The boundary ∂A of the absorbing area A, when A is invariant, is found by

∂A ⊂
m+

k=1

T k(γ) (2.16)

for some suitable integer m.

In the case when A is not invariant, the invariant absorbing area I is found by
finding the intersections of finite iterate of A:

I =

m,

k=1

T k(A) (2.17)

for some finite m.

Figure 2.3: Boundary of the attractor is formed as P1P2XP3Q2. X is the inter-
section of P3Q3 and Q1P2.

Now looking back at Figure 2.2. The border, y-axis, can be regarded as a critical
curve. Since the number of preimages of some point on the axis is exactly 1,
whereas the rest points give 2 preimages. We look at its intersection of the
y-axis with the absorbing area to get the line γ = OQ1 and track down its
images under the map for some finite number of iterates to get a union of lines

CHAPTER 2. BIFURCATIONS 12

following the process in Eq.(2.16). The boundary is then a subset of the newly
formed union of lines and we will find the exact boundary by inspecting the
computer-generated graph.

Inspect the images of OQ1:

OQ1 → P1Q2 −

-

. OP1 → P1P2 −
/

P1Q1 → P2Q2 → P3Q3

P2Q1 → P3Q2 → P4Q3

OQ2 → P1Q3 → P2Q4

(2.18)

The above procedure stops once we find all the bounding curves. Notice that
the image of some lines has two parts because it crosses the border and needs
to be mapped separately.

Combine the above iterated lines with Figure 2.2, and take the union of these
lines, the boundary is found to be a polygon with 5 sides P1P2XP3Q2 as shown
in Figure 2.3.

2.2 Bifurcation On the Boundary

We should now proceed from bifurcation on the border and treat the generated
attractors as the starting point of new bifurcations. In the previous sections,
i.e. in Figures 2.3 and 2.1, the perturbed point P2 affects only the parameters
on the right R when x > 0. The parameters on the L, τL and δL are set to be
fixed and the fixed point on R is in the polygon. Therefore, we should let Q3,
the image of Q2, cross the boundary P1P2, and check what would happen to
the geometry of the attractor.

2.2.1 When P2 is On the Right

First, consider the case when P2 is on the right (See Figure 2.1). Let Q3, the
image of Q2 (which is the image of Q1, where P2P3 intersects the axis), cross
the boundary line P1P2 by a small amount. Figure 2.4 was generated.

Follow the same procedure in Eq.(2.18):

OQ1 → P1Q2 −

-

.
OP1 → P1P2 → P2P3

OQ2 → P1Q3 → P2Q4 −
/

P2R1 → P3R2

Q4R1

From this we get the new polygonal attractor with 8 sides: R2P1R3X1P2R4X2P3.
4 extra sides are added. Intuitively, this is because when Q3 escapes P1P2, an
extra area P1R3X1 leaks out of the initial quadrilateral which adds two sides.
This extra area is then mapped to P2R4X2 which adds another two sides.

Now we examine other potential bifurcations. P1, P2, P3 form the vertices of the
polygon. Once P4, the image of P3, goes inside the polygon, it never escapes
because it is an absorbing area. Figure 2.5 shows what would happen if we
break this criterion, i.e. P4 crosses the line P1P2.

CHAPTER 2. BIFURCATIONS 13

Figure 2.4: Q3 crosses the initial boundary line P1P2 by a small amount. X1

is the intersection of P1P2 and R3P4. X2 is the intersection of P2P3 and R4P5.
X1 is mapped to X2.

Again, use the method of critical curves to find the boundary. Track down the
images of OQ1:

OQ1 → P1Q2 −
/

OP1 → P1P2 → P2P3

OQ2 → P1Q3 → P2Q4

P2P3 −
/

P2Q1 → P3Q2 → P4Q3

P3Q1 → P4Q2

P2Q4 −
/

P2R1 → P3R2 → P4R3 → P5R4

Q4R1 → Q5R2 → Q6R3

This new attractor: P1R3P4X1P2R4P5R5X2P3R2 has 11 sides, 3 more com-
pared to Figure 2.4.

A question arises when both Q3 and P4 cross the line P1P2. Which point crosses
the P1P2 first? Is it always Q3? If not, then is there a new bifurcation when P4

comes out and Q3 is inside? The answer is NO. P4 cannot exit the boundary if
Q3 doesn’t exit. A simple proof is given as follows using explicitly the border
collision normal form.

Proving the order of exiting P1P2

Recall the normal form in Eq.(1.2) and look at its iterated points O → P1 →
P2 → P3 → P4, Q1 → Q2 → Q3, A → B, as illustrated in Figure 2.6. Suppose
Q3 is on the line P1P2. Then, to see if P4 exits the line, one simply needs to
compare the slope of the lines P1P2 and P1P4. The equation of P1P2 is

y = −δR
τR

(x− 1). (2.19)

So its slope is simply −δR/τR. Now we should determine the condition that Q3

is on the line P1P2. But the algebraic expression of Q3 is quite complicated.

CHAPTER 2. BIFURCATIONS 14

Figure 2.5: Generated new attractor when both Q3 and P4 cross the line P1P2.
X1 is the intersection of P1P2 and Q2P4. X2 is the intersection of P2P3 and
R2R5.

-1-1 -0.5-0.5 0.50.5 11 1.51.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

00

OO PP11

PP22

PP33

QQ22

QQ11

QQ33

PP44

AA

BB

Figure 2.6: A schematic diagram showing the setup for the proof.

To avoid this, we can choose a point A(−1, 0) which is near Q2 because the
bifurcations always happen in a small neighbourhood of parameter space. B(1−
τL, δL) is the image of A. If Q3 is on P1P2, B must also be on P1P2 (Q3 and B
are close and both of them are on negative x-axis). Plug the coordinate of B in
Eq.(2.19), we get the condition that B(Q3, equivalently) is on P1P2:

δL
τL

=
δR
τR

. (2.20)

The coordinate of P4 is
&

−δR (τL + τR + 1) + τL
0
τ2R + τR + 1

1
+ 1

−δL
0
−δR + τ2R + τR + 1

1
'
. (2.21)

Substitute the above condition to the coordinate of P4, we get a new coordinate
and the slope of P1P4 can be computed, call it k1. Denote the slope of P1P2

CHAPTER 2. BIFURCATIONS 15

as k0 ≡ −δR/τR. If we can show that the slope of P1P4 is always smaller than
P1P2, i.e., k1/k0 < 1, then it is proved. And if

k1
k0

=
τL (δR − τR (τR + 1)− 1)

δR (τL + τR + 1)− τL (τ2R + τR + 1)
< 1, (2.22)

this expression can then be simplified to

δR(1 + δR) > 0. (2.23)

This always holds because δR > 0 (we assumed P2 always has a negative y-
component).

□

2.2.2 When P2 is On the Left

Start from the attractor in Figure 2.3 when Let Q3 exits the line P1P2 by a
small amount, but P4 is still inside. As explained in the last section, different
bifurcations will occur when P4 is also outside and if P4 is outside, Q3 must be
outside as well. The plot in Figure 2.7 is observed.

Figure 2.7: Q3 exits the line P1P2. A new attractor with 10 sides is formed. X1

is the intersection of P1Q1 and Q3P4. X2 is the intersection of P2Q2 and Q4P5.
X3 is the intersection of P2Q2 and Q5P6. X1 maps to X2.

Boundary lines are found as usual by:

OQ1 → P1Q2 −
/

OP1 → P1P2

OQ2 → P1Q3 → P2Q4 → P3Q5

P1P2 −
/

P1Q1 → P2Q2 → P3Q3

P2Q1 → P3Q2 → P4Q3 → P5Q4 → P6Q5

CHAPTER 2. BIFURCATIONS 16

Figure 2.8: Both P4 and Q3 exit the boundary line P1P2. X1 is the intersec-
tion of P1Q1 and Q6P4. X2 is the intersection of P2Q2 and Q7P5. X3 is the
intersection of P2Q2 and Q5P6. X1 maps to X2. This attractor is a 12-gon.

Now let P4 cross the line as well. We get Figure 2.8.

To find the extra two sides added compared to Figure 2.7, we need to iterate a
few more times on the line P3Q5:

P3Q5 → P4Q6 → P5Q7

2.3 More Bifurcations

In the previous discussion, we have only observed the cases of bifurcations ini-
tiated from a triangular attractor. However, as we have explained in Section
2.1.1 using the continuity argument, this is not restricted to the number of
sides. In Section 1.2, it is shown that polygon attractors can be constructed
with increasing number of sides.

Here, we illustrate a few more example figures when we get more number of
sides. For instance, Figure 2.9 shows the existence of attractors with more sides
when the point moves away from the y-axis by a small amount. Figure 2.10
shows the bifurcation on the border for a quadrilateral attractor and Figure
2.11 shows the bifurcation on the boundary. These are compatible with the
expectation.

In all of these setups, one should always note the assumptions we made for
constructing the attractor in the previous chapters. And all bifurcations occur
in a small neighbourhood of the parameter space from the initial state. If it is
not small, many constraints would be violated and complicated geometry may
appear.

CHAPTER 2. BIFURCATIONS 17

(a)

(b)

(c)

Figure 2.9: Attractors formed by perturbing the point a small amount from the
y-axis with increasing number of sides.

CHAPTER 2. BIFURCATIONS 18

Figure 2.10: P3 is perturbed to the left.

Figure 2.11: P3 is perturbed to the right while Q3 also exits P1P2.

Chapter 3

Conclusion

We introduced the concepts of absorbing area and attractor in piecewise smooth
systems, which can be transformed to a border collision normal form up to affine
linear approximation. Then we come up with the assumptions used to construct
the simple polygonal attractors and created a compatible code to numerically
assist the analysis in the bifurcations of the geometry of the attractors. The
bifurcation occurs when we have a small perturbation in its parameter space
that either causes the point to cross the border or certain boundary lines. By a
continuity argument, the existence of such an attractor in a small neighbourhood
of the parameter space is ensured. The possible bifurcations in the geometry of
the attractors were analysed with the help of Matlab programs. A mechanism is
derived from the method of critical curves to find the boundary of the attractors.

Due to the very limited amount of time provided for this project, many proposed
ideas were not studied:

• The assumptions made for generating such a simple attractor could only
be a subset of a more general space of parameters. If given more time, we
wish to find out such parameter space.

• A rigorous proof for the generation of the discussed attractors is not given.
In (Glendinning and Wong; 2011), this is done by first proving it is in-
variant, then creating a basin that contains the invariant absorbing area
to prove it is attracting. If given more time, we would like to explore the
possibility of a general proof.

• The study relied heavily on the use of computer. If we can devise a better
automatic program to dynamically visualise the behaviour when changing
the parameters, we may have more insightful results.

• The border collision normal form is a continuous map in R2, thus, is it
possible to generalise and induce a bifurcation theory for any continuous
two-dimension map.

• Classify all possible bifurcations in the geometry of the attractors.

In the end, we get a series of bifurcations of the attractors. One could classify
them into the product of these two cases:

19

CHAPTER 3. CONCLUSION 20

1. The point Pn is either on the right or left.

2. Whether the point on the negative x-axis crosses the boundary line.

If we increase the number of sides of the initial attractors before the perturba-
tion, the bifurcations become more complicated. More vertices and more sides
appeared, It may occur that beyond a certain point when the number of sides
of the initial attractor n = n0, there no longer exists a “simple” polygonal
attractors. Because

1. More sides are iterated and vertices come extremely close to each other
that it is difficult to distinguish between vertices and we may not have
simple lines that form the boundary of the attractor.

2. More iterations will make many conditions become significantly sensitive
to the initial condition (or perturbation). Therefore, the intersection of
these neighbourhoods of the parameter space may be an empty set and
there no longer exists an attractor at all.

The possible conclusion from this is that for a two dimensional piecewise smooth,
everywhere continuous map, we may only find a polygonal attractor for a finite
number of sides.

Bibliography

Banerjee, S., Yorke, J. A. and Grebogi, C. (1998). Robust chaos, Physical
Review Letters 80(14): 3049.

Di Bernardo, M., Budd, C. J., Champneys, A. R., Kowalczyk, P., Nordmark,
A. B., Tost, G. O. and Piiroinen, P. T. (2008). Bifurcations in nonsmooth
dynamical systems, SIAM review 50(4): 629–701.

Glendinning, P. and Wong, C. H. (2011). Two-dimensional attractors in the
border-collision normal form, Nonlinearity 24(4): 995.

Mira, C. (1996). Chaotic dynamics in two-dimensional noninvertible maps,
Vol. 20, World Scientific.

Nusse, H. E. and Yorke, J. A. (1992). Border-collision bifurcations including
“period two to period three” for piecewise smooth systems, Physica D: Non-
linear Phenomena 57(1-2): 39–57.

21

Appendix

main.m

1 %% INITIAL PARAMETERS

2 % set_p0 position of the orgin

3 % nr # of iterations on the RIGHT (x>0)

4 % nit # of iterations for many points

5 % set_y assigned y-coord on x-axis

6 % set_pt_nr assigned position after *nr* iterations on the

RIGHT (x>0)

7 % set_pt_leftmapped assigned position by the map on the LEFT (x<0)

8

9

10 %%%

11 clear;

12 clear global;

13 global tr dr tl dl set_y

14 figure;

15 nr=5;

16 nit =20000;

17 set_p0 =[0;0];

18 set_y =-2;

19 set_pt_nr =[-.2; set_y];

20 set_pt_leftmapped =[.5; -1];

21 %%%

22

23

24 %% SYMBOLIC CALCULATION USED FOR vpasolve

25 var_r=set_p0;

26 for i = 1:nr

27 var_r = sym_fr(var_r);%%%%%

28 end

29

30 var_l = sym_fl ([set_y +1;0]);%%%

31

32

33 %% FIND *tr *dr* *tl* *dl*

34 % the solution from _vpasolve_ may contain complex , exclude them

35 % (what does complex represent ???)

36 % @@@ *tr* and *dr* may be multi -dimension arrays (multiple

solutions)

37

38 [dr ,tr]= vpasolve(var_r == set_pt_nr);

39 [dr ,tr]=deal(double(dr(imag(dr)==0)),double(tr(imag(tr)==0)));

40 [dr ,tr]=deal(dr(1),tr(1));

41 % [dr ,tr]=deal(dr+0 ,tr -0.1);

42

22

APPENDIX 23

43 [dl ,tl]= vpasolve(var_l == set_pt_leftmapped);

44 [dl ,tl]=deal(double(dl),double(tl));

45

46 %% Filter tr dr

47 % all iterated points before *p_nr* needs to be on the right

48 % use this to exclude some tr dr that may carry points to the left

49

50 %% PLOT ITERATIONS AND FIRST FEW LINES

51 iter_pt=set_p0;

52 ptP =[];

53 for i=1: nit %collect points

54 iter_pt=f(iter_pt);

55 ptP=[ptP ,iter_pt];

56 end

57

58 scatter(ptP(1,:),ptP(2,:) ,...

59 10,[0 0.4470 0.7410] ,’.’); % iteration plot

60 hold on

61

62 % polygon =[ptP(:,1:nr+1),ptP(:,1)];

63 % plot(polygon (1,:),polygon (2,:) ,’Color ’,[0 0.4470 0.7410] , ’

LineWidth ’,2);

64 % hold on

65 plot(ptP(1,1:nr+2),ptP(2,1:nr+2),".",’Marker ’,’o’ ,...

66 ’MarkerFaceColor ’ ,[0.8500 0.3250 0.0980] ,...

67 ’MarkerEdgeColor ’ ,[0.8500 0.3250 0.0980] ,’Color ’,’k’,’LineWidth

’ ,2); % first few lines

68

69

70 for i=1:nr+2

71 text(ptP(1,i)+0.03 , ptP(2,i) -0.03 ,...

72 sprintf(’P_{%d}’,i) ,...

73 ’Color ’,’k’ ,...

74 ’FontSize ’,14,’FontWeight ’,’bold’);

75 end

76

77

78

79 %% PLOT FIXED POINTS AND LEFT MAPPED POINT

80 fixed_pt_r =1/(1+dr -tr)*[1;-dr];

81 plot_left_mapped=scatter(set_pt_leftmapped (1),set_pt_leftmapped (2)

,...

82 50,’m’,’filled ’);

83 % hold on

84 % plot_fixed=scatter(fixed_pt_r (1),fixed_pt_r (2) ,...

85 % 50,’r’,’filled ’);

86

87

88 %% ANNOTATIONS & TEXTS & PLOT RANGE ...

89 grid on

90 xlim ([-1.7 1.5]);

91 ylim ([-2.3 0.4]);

92 xLim=xlim;

93 yLim=ylim;

94 str_in_plot=sprintf("$\\ tau_R =%1.2f,\\ delta_R =%2.2 f$\n $\\ tau_L

=%3.2f,\\ delta_L =%4.2 f$" ,...

95 tr ,dr ,tl ,dl);

96 text (0.99* xLim (1) ,0.99* yLim (2),str_in_plot ,...

97 ’HorizontalAlignment ’,’left’,’VerticalAlignment ’,’top’ ,...

98 ’Interpreter ’,’latex ’,’FontSize ’ ,14);

99 text (0.02 , -0.02 ,’O’,’FontSize ’ ,16)

100 % title(sprintf(’title ’),’FontSize ’,16,’FontWeight ’,’bold ’)

APPENDIX 24

101 xline(0,’LineWidth ’ ,1.5);

102 % legend(plot_fixed ,...

103 % ’Fixed point ’,’FontSize ’,14);

104

105

106

107 %% DEFINE FUNCTION

108 function x2 = sym_fr(x)

109 syms tr dr

110 m=[1;0];

111 A_R=[tr 1;-dr 0];

112 x2=A_R*x+m;

113 end

114

115 function x2 = sym_fl(x)

116 syms tl dl

117 m=[1;0];

118 A_L=[tl 1;-dl 0];

119 x2=A_L*x+m;

120 end

label.m

1 % figure;

2 [n1 ,n2]=deal (3,3);

3

4 pt_start=InterX(ptP (: ,5:6) ,...

5 [0,0;0,-5]);

6 ptQ =[];

7 for i=1:n1 %collect points

8 ptQ=[ptQ ,pt_start];

9 pt_start=f(pt_start);

10 end

11

12 pt_start=InterX ([ptP(:,3),ptQ(:,5)],[0,0;0,-5]);

13 ptR =[];

14 for i=1:n2 %collect points

15 ptR=[ptR ,pt_start];

16 pt_start=f(pt_start);

17 end

18

19 X1=InterX ([ptQ(:,6),ptP(:,4)],[ptQ(:,1),ptP(:,1)]);

20 X2=InterX ([ptQ(:,7),ptP(:,5)],[ptQ(:,2),ptP(:,2)]);

21 X3=InterX ([ptQ(:,5),ptP(:,6)],[ptQ(:,2),ptP(:,2)]);

22

23 %% PLOT , LABEL

24 polygon =[ptQ(:,2),ptP(:,1),ptQ(:,3),ptP(:,4),X1 ,...

25 ptP(:,2),ptQ(:,4),ptP(:,5),X2 ,X3 ,...

26 ptQ(:,5),ptP(:,3),ptQ(:,2)];

27 plot(polygon (1,:),polygon (2,:),’Color ’ ,[0 0.4470 0.7410] ,’LineWidth

’ ,2);

28

29 scatter(ptQ(1,:),ptQ(2,:) ,...

30 36,’g’,’s’,’filled ’);

31 scatter(ptR(1,:),ptR(2,:) ,...

32 36 ,[0.4660 0.6740 0.1880] ,’s’,’filled ’);

33 scatter ([X1(1),X2(1),X3(1)],[X1(2),X2(2),X3(2)],...

34 50,’r’,’s’,’filled ’);

35

36

37 for i=1:n1

APPENDIX 25

38 text(ptQ(1,i)+0.05 , ptQ(2,i) -0.05 ,...

39 sprintf(’Q_{%d}’,i) ,...

40 ’Color ’,’g’ ,...

41 ’FontSize ’,14,’FontWeight ’,’bold’);

42 end

43 for i=1:n2

44 text(ptR(1,i)+0.03 , ptR(2,i) -0.03 ,...

45 sprintf(’R_{%d}’,i) ,...

46 ’Color ’ ,[0.4660 0.6740 0.1880] ,...

47 ’FontSize ’,14,’FontWeight ’,’bold’);

48 end

49

50 text(X1(1) +0.03 ,X1(2) -0.03,’X_1’ ,...

51 ’Color ’,’r’ ,...

52 ’FontSize ’,14,’FontWeight ’,’bold’);

53 text(X2(1) +0.03 ,X2(2) -0.03,’X_2’ ,...

54 ’Color ’,’r’ ,...

55 ’FontSize ’,14,’FontWeight ’,’bold’);

56 text(X3(1) +0.03 ,X3(2) -0.03,’X_3’ ,...

57 ’Color ’,’r’ ,...

58 ’FontSize ’,14,’FontWeight ’,’bold’);

f.m

1 function output=f(x)

2 % return either the image of a line or a point

3 % input a 2 by 1 column vector: [x1;y1]

4 % return the image: 2 by 1 column vector , under the map

5 % input a 2 by 2 column vector: [x1 ,x2;y1 ,y2]

6 % see if x1*x2 >=0

7 % if so , means two points are on one side , no intersection with

x=0

8 % return a 2 by 2 column vector consisting the image point of

each

9 % column vector

10 % if not , then x1*x2 <0, there ’s intersection point

11 % return a 2 by 3 column vector corresponding to the image of

each pt

12 global set_y

13 n_col=size(x,2);

14 switch n_col

15 case 1

16 output=f_pt(x);

17 case 2

18 if x(1,1) * x(1,2) >=0

19 output =[f_pt(x(:,1)),f_pt(x(:,2))];

20 else

21 itsc=InterX ([x(1,:);x(2,:)],[0,0;0, set_y]);

22 output =[f_pt(x(:,1)),f_pt(itsc),f_pt(x(:,2))];

23 end

24 end

25

26 function im_pt = f_pt(x)

27 global tl dl tr dr

28 m=[1;0];

29 A_L=[tl 1;-dl 0];

30 A_R=[tr 1;-dr 0];

31 if x(1) >=0

32 im_pt=A_R*x+m;

33 else

34 im_pt=A_L*x+m;

APPENDIX 26

35 end

36 end

37 end

InterX.m

1 function P = InterX(L1 ,varargin)

2 %INTERX Intersection of curves

3 % P = INTERX(L1 ,L2) returns the intersection points of two curves

L1

4 % and L2. The curves L1 ,L2 can be either closed or open and are

described

5 % by two -row -matrices , where each row contains its x- and y-

coordinates.

6 % The intersection of groups of curves (e.g. contour lines ,

multiply

7 % connected regions etc) can also be computed by separating them

with a

8 % column of NaNs as for example

9 %

10 % L = [x11 x12 x13 ... NaN x21 x22 x23 ...;

11 % y11 y12 y13 ... NaN y21 y22 y23 ...]

12 %

13 % P has the same structure as L1 and L2 , and its rows correspond

to the

14 % x- and y- coordinates of the intersection points of L1 and L2.

If no

15 % intersections are found , the returned P is empty.

16 %

17 % P = INTERX(L1) returns the self -intersection points of L1. To

keep

18 % the code simple , the points at which the curve is tangent to

itself are

19 % not included. P = INTERX(L1 ,L1) returns all the points of the

curve

20 % together with any self -intersection points.

21 %

22 % Example:

23 % t = linspace (0,2*pi);

24 % r1 = sin (4*t)+2; x1 = r1.*cos(t); y1 = r1.*sin(t);

25 % r2 = sin (8*t)+2; x2 = r2.*cos(t); y2 = r2.*sin(t);

26 % P = InterX ([x1;y1],[x2;y2]);

27 % plot(x1 ,y1 ,x2 ,y2 ,P(1,:),P(2,:) ,’ro ’)

28

29 % Author : NS

30 % Version: 3.0, 21 Sept. 2010

31

32 % Two words about the algorithm: Most of the code is self -

explanatory.

33 % The only trick lies in the calculation of C1 and C2. To be

brief , this

34 % is essentially the two -dimensional analog of the condition that

needs

35 % to be satisfied by a function F(x) that has a zero in the

interval

36 % [a,b], namely

37 % F(a)*F(b) <= 0

38 % C1 and C2 exactly do this for each segment of curves 1 and 2

39 % respectively. If this condition is satisfied simultaneously for

two

40 % segments then we know that they will cross at some point.

APPENDIX 27

41 % Each factor of the ’C’ arrays is essentially a matrix

containing

42 % the numerators of the signed distances between points of one

curve

43 % and line segments of the other.

44

45 %... Argument checks and assignment of L2

46 error(nargchk (1,2,nargin));

47 if nargin == 1,

48 L2 = L1; hF = @lt; %... Avoid the inclusion of common

points

49 else

50 L2 = varargin {1}; hF = @le;

51 end

52

53 %... Preliminary stuff

54 x1 = L1(1,:) ’; x2 = L2(1,:);

55 y1 = L1(2,:) ’; y2 = L2(2,:);

56 dx1 = diff(x1); dy1 = diff(y1);

57 dx2 = diff(x2); dy2 = diff(y2);

58

59 %... Determine ’signed distances ’

60 S1 = dx1.*y1(1:end -1) - dy1.*x1(1:end -1);

61 S2 = dx2.*y2(1:end -1) - dy2.*x2(1:end -1);

62

63 C1 = feval(hF ,D(bsxfun(@times ,dx1 ,y2)-bsxfun(@times ,dy1 ,x2),S1)

,0);

64 C2 = feval(hF ,D((bsxfun(@times ,y1 ,dx2)-bsxfun(@times ,x1 ,dy2))’,

S2 ’) ,0) ’;

65

66 %... Obtain the segments where an intersection is expected

67 [i,j] = find(C1 & C2);

68 if isempty(i),P = zeros (2,0);return; end;

69

70 %... Transpose and prepare for output

71 i=i’; dx2=dx2 ’; dy2=dy2 ’; S2 = S2 ’;

72 L = dy2(j).*dx1(i) - dy1(i).*dx2(j);

73 i = i(L~=0); j=j(L~=0); L=L(L~=0); %... Avoid divisions by 0

74

75 %... Solve system of eqs to get the common points

76 P = unique ([dx2(j).*S1(i) - dx1(i).*S2(j), ...

77 dy2(j).*S1(i) - dy1(i).*S2(j)]./[L L],’rows’) ’;

78

79 function u = D(x,y)

80 u = bsxfun(@minus ,x(:,1:end -1),y).* bsxfun(@minus ,x(:,2:end)

,y);

81 end

82 end

